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Aging in two- and three-particle annihilation processes
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We investigate the global two-time density-density correlations of two- and three-particle annihilation pro-
cesses. We show that the dynamical correlations scale with the ratio of the times, and thus exhibit aging. The
phenomenon of aging in these processes can be understood in terms of a mean-first-passage-time approach to
the motion of the system in phase space. We find that aging does not result from the spatial correlations and
domain growth in the system, but from a particular slowing down of the dynamics as the global density
decreases. This result holds also in one-dimensional diffusion-limited pair annihilation process, for which we
calculate the exact scaling form of the autocorrelation funcfi8t063-651X98)09802-X]

PACS numbe(): 05.40:+j, 82.20.Mj, 02.50.Ey

[. INTRODUCTION persist. We show that under both circumstances the time cor-
relations of the surviving number of particles exhibit aging

Aging in glasseqd1] and spin glassef2,3] is now the scaling.
focus of intense experimentfi2,4] and theoretica[5-13| The paper is organized as follows. In the next section we
investigations. Typically we consider a system prepared in glescribe the diffusion-limited annihilation processes we are
nonequilibrium state at time=0; it evolves for a duration of investigating. Since we do not assume the reader to be famil-
time t,,, and we call this the waiting time or the age of the iar with such processes we provide a somewhat longer than
system. Then we observe how a macroscopic property atsual introduction to the problem we want to address. We
timet,,+t is correlated to its value &f,. Let us denote this show that in the limit of large diffusion constafur, equiva-
correlation byC(t,, ,t,,+1t). A stochastic process is said to be lently, for strong repulsive forces between reactarite
aging if this autocorrelation is a function of the ratia, of ~ Problem can be mapped exactly onto a directed random walk
the two times. This is in contrast to stationary processes foPn an integer lattice, with site-dependent transition rates. The
which the autocorrelation function would be independent ofi@andom walk modeling of the process is discussed in Sec. lll.
t, and depend only on the time differente Thus aging We consider in Sec. IV the random walk process and derive
processes constitute a subclass of nonstationary processiie master equation for the first passage time densities. Em-
Physically, the dependence of correlations on the ratio of th@loying generating function techniques we obtain exact ex-
times implies a scaling property: a young system and an ol@ressions for the mean first passage time from an arbitrary
system evolve the same way if their evolution times are mealattice site to another. We then interpret the waiting and the
sured in units of their respective ages. One can find aging ifélaxation times in terms of appropriate mean first passage
a system that is either perennially in a nonequilibrium statetimes, and show that the former increases with the latter,
or that relaxes very slowly to its equilibrium state. In the Signaling the presence of aging in these models. Mean-first-
former case one would usually find aging for all large wait-Passage considerations help us to obtain also the time scale
ing and relaxation times whereas in the latter one can dete@ver which the phenomenon of aging occurs. In Sec. V, we
aging on time scales that are lar@® that transients die out obtain by exact numerical calculation the autocorrelation
but not too |arge Compared to the equi“bration time. MorernCtion of the random walk process and show that it scales
importantly, for both classes of systems, aging would be2s the ratio of the observation time to the waiting time, over
present if the relaxation time from a quasiequilibrium state tdhe time scales derived from the mean-first-passage-time
the next increases with the time it takes to reach the quasfonsiderations. The principal conclusions are presented in
equilibrium state:The more you wait, the longer the systemthe last section. In the Appendix we consider separately
takes to relax diffusion-limited pair annihilation in one dimension where,

It is clear from the above discussion that glasses provid@s opposed the models discussed in Secs. |-V, diffusive

prototypical models for systems that exhibit aging, owing tomixing is extremely weak. We show that also this process is
the presence of enerdg] and/or entropy13] barriers. Itis ~aging and calculate analytically the exact scaling form of the
also clear that the phenomenon of aging should indeed bautocorrelation function.
present in a rather large class of slowly relaxing nonequilib-
rium processes. In this paper we consi_dgr rgaction—diffugion II. DIFFUSION-LIMITED ANNIHILATION PROCESSES
systems of particles hopping and annihilating on a lattice.
We are particularly interested in the two generic ca@gs We consider processes of a single species of particles that
where diffusion is sufficiently fast to erase spatial densitydiffuse and react on encounter, assuming that the reaction
correlations resulting from the annihilation process, énd products play no role in the subsequent dynamics of the an-
where diffusive mixing is inefficient and large fluctuations nihilation process. Processes of this kind, e.g., diffusion-
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limited pair annihilation 24— (DLPA), coagulation(or  speeds up the annihilation process. The answer to this prob-
sometimes more appropriately called fugi@®— A (DLC),  lem is not obvious as the very presence of spatial correla-
three-particle annihilation8— @ (DL3A), etc. have a long tions might conceivably be the origin of this supposed aging.
history of study, an important ingredient being the theory ofPhrased differently, if one can establish aging for this limit
diffusion-limited reaction based on the work by Smolu- Of fast diffusion, then surely one expects it to occur in pro-
chovsky[14]. Already at that time it was realized that a naive cesses with relatively weak diffusive mixing where the dy-

; ; : ics is slower
rate equation approach for the density logs=—\p* for ~ NAMICS IS S : . . . .
thek-particle annihilation process with reaction rate-fails Thf|s simple argument is copflrmed to be correctin a t_h|rd
if diffusive mixing of reactants is too weak to destroy spatial step for DLPA in one dimension, where spatial correlations

particle density correlations. Such correlations, in fact, anti€xt€nd over regions of monotically increasing lengthyt

correlations, build up because the annihilation process crd20] and the decay of the particle density is anomalously
ates empty regions and thus particles are more likely to b&!OW [21]. We conclude that the origin of aging in this sys-
found far apart rather than in close proximity. This effect is!®€M does not stem from spatial correlations and increasing
strong in low dimensions and decreases with increasing ddomain sizes, but from the increasingly slow relaxation of
mensionality of the system. Since the beginning of the 1980ie uncorrelated annihilation procei22]. Since the nature
this early insight, which is based on a fluctuation improved®f Our treatment of the one-dimensional problem is very dif-
mean-field approach, has been confirmed and vastly e){_e_rent from the main course of our |_nvest|gat|0n andZ als_o,
tended by exact results on DLPA and DLC in one dimensionSince our (esult is not gt all surprising, this calculation is
see[15] for a recent review. More recently, renormalization Presented in the Appendix. ,
group studies have further clarified the role of the dimension- FOr @ precise definiton of DLPA consider a
ality of the system. This is briefly reviewed ii6]. We d-dlmen5|o.nal Iatt|cg. Eartlclgs hop randomly between
would like to mention in passing that it has been realized thaf€arest-neighbor lattice sites with constant faté/Vhen two
DLPA and DLC are equivalent in the sense that the generat_)artlcles meet on_the same lattice site, they annihilate instan-
tors of their respective stochastic time evolutisee below ~ faneously. Generically, we assume some short range repul-
are related to each other by a similarity transformafibr. sive fqrce, _wh|ch.has a consequence that. particles hop onto
Hence, in what follows we need to consider only DLPA for 0ccupied sites with a rate less than and independein.of
the case of two-particle annihilation processes. Equalently one can assume a hard-core r_epulsmn of par-
For the purpose of this work it is important to note thatticles and reaction with rate’ when two particles meet on
the mean-field rate equation approdathich completely ne- nearest-nelghbor sites. Both processes are identical: in egch
glects all spatial correlationgrovides an appropriate frame- Case eaph lattice site can be occ_upled by at most one particle
work for DLPA in dimensions larger than two for two- (in the fII_’St case because of the instantaneous annihilation of
particle annihilation and in dimension larger than one for théWo particles, in the second case due to their hard-core re-
three-particle annihilation processés8]. In higher-order ~ Pulsion and pair annihilation take®ffectively place on
particle annihilation processes the density fluctuations ararest-neighbor sites. The three-particle annihilation pro-
irrelevant already in one dimension. We shall not considefeSs is defined analogously. o
such processes. Hence, for an investigation of the phenom- We describe the stochastic dynamics in terms of a master
enon of aging in these processes it is sufficient to examingduation for the time evolution of the probabili(7,t) to
the limiting cases of strong fluctuation effe¢BLPA in one  find a particle configuration denoted byat timet. A con-
dimension with finite diffusion rateand weak spatial density Venient representation of the master equation is in terms of a
correlations, respectivekall diffusion-limited single-species Vector equation for the probability vect¢P(t)), the so-
annihilation processes in three dimensions or DLPA withcalled quantum Hamiltonian formalisitfor a review see
infinite diffusion rate in one dimension [20,23,29). To each state of the system one assigns a basis
Of course, within a pure mean-field framework there is novector| ) and its transposé|, which form an orthonormal
possibility of studying aging, which is a phenomenon ob-basis of the vector space. The probability vector is then given
served by measuring temporal correlations. Hence we shaly |P(t))=2,P(#7,t)|7) and the master equation can be
set up the problem as follows: we first formulate the full cast in the form of an imaginary-time quantum mechanical
process of diffusion-limited annihilation in any dimension in Schralinger equation,
terms of a master equation. Then, in order to account for the
observation that correlations are weak in three dimensions E|P(t)>:—H|P(t)> 1)
we shall employ a technical trick to simulate this situation, dt '
but at the same time retain the temporal correlations of the
total particle density. This is achieved by taking the limit of where the off-diagonal elements of the “quantum Hamil-
infinite diffusion rate, and at the same time leaving the eftonian” H are given by the transition rate$d, ,
fective reaction rate constant. As will be shown in Secs. IV=(7|H|»')=—w(%'—») and the diagonal elements are
and V, annihilation processes without spatial correlatidms given byH, =3, ,w(7— »"). The off-diagonal terms of
exhibit aging. the Hamiltonian give the gain terms in the probabilty distri-
Note that this situation is a “worst case scenario.” If one bution P(#,t) while the diagonal terms describe the loss of
could argue for the phenomenon of aging on the basis of thprobability due to possible transitions out of the staterhe
theory of diffusion-limited reactions, e.g., by using domain-more conventional form of writing a general master equation
size argumentfl9], then the question would remain whether can be recovered from Eql) by multiplying from the left
aging survives in the case of rapid diffusion, which surelywith (#|. The quantum Hamiltonian for the one-dimensional
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version of this process is given in the Appendix where alsof particles in the system as the position of a random walker

the exact solution of the master equation for nonrepulsiven a finite, one-dimensional lattice, indexed by integers from

particles is derived. 0 to M=2L. Since two particles annihilate upon meeting,
Modeling the(effective) absence of spatial correlations by the random walk jumps two lattice sites to the left in one

the limit of infinite hopping rate leads to an enormous sim-time unit. There is no right jump since there is only annihi-

plification of the master equation. The state of the system isation and no creation of particles. Equivalently we can con-

then completely characterized by the probability of findingsider a single-step random walk on the latticeL(Owith

exactly N particles, rather than also by the spatial arrangenearest-neighbor left jump rate

ment of these patrticles. The fast diffusion guarantees that the

system randomizes very quickly and hence that always each

N-particle spatial configuration is equally likely. The annihi- Q= 2k(2k—1) (4)

lation problem reduces now to that of calculating the prob- 2L(2L—-1)

ability of finding two particles simultaneously at a neighbor-

ing lattice site and annihilating them. L&i(t) denote the

total number of particles in the system at timeThe equa-

tion governing the evolution oN(t) can be immediately

written down as

at lattice sitek, and the right jump rate is zero at all sites. It
is clear that the left boundaiigite 0) is absorbing. The ran-
dom walk starts at site. The position of the random walk at
any time measures the number of particles at the time. Thus

d if the random walk is at lattice positidnat timet, then it is
a(N(t»:—)\E > (NNt 59 (2)  equivalent to saying that there ard particles left in the
k) system and B—2k particles have since been annihilated

under the reaction. When the random walker reaches the ab-
sorbing site the pairwise annihilation has led to the extinction
®f the population. The fact that the left jump probability
becomes less and less as one approaches the site 0 signifies
that the annihilation events becomes rarer and rarer as the
total number of particles decreases. It is this slowing down of
the dynamics that leads to aging in the process, as we shall
see shortly in the next two sections.

The random walk modeling of the three-particle annihila-
tion process proceeds essentially in the same way. We as-
sume 3. particles to be present at tinie=0. In the random
walk picture the annihilation corresponds to a jump of three
sites to the left on a lattice of L3 sites until the system
reaches the absorbing origin. Equivalently, the random walk
executes nearest-neighbor jumps on the latticé)(0The
left jump probability at sitek is

where the indeX runs over all the lattice sites and the sec-
ond sum runs over all the nearest-neighbor pairs of lattic
sites.n, is the number of particles at sikg which is either 0

or 1. The random numbaer,, 5 is the number of particles in
the nearest-neighbor site lof Since there are no correlations,
we note that the probability of finding two particles on
nearest-neighbor sites in a random configuratiorNopar-
ticles onM sites is equal ttN(N—1)/[M(M —1)].

In order to solve Eq(2), we denote byP(N,t) the prob-
ability of finding N particles in the system at time given
that a total ofM particles were distributed uniformly on the
d-dimensional lattice at timé=0. Then the following con-
sideration yields a master equation for time evolution of
P(N,t). The probability of finding exacthN particles in-
creases by an annihilation event in a state Witk 2 par-
ticles. The rate of change is proportional to the probability
(N+2)(N+1)/[M(M—1)] of finding two particles on
nearest-neighbor sites in thél {2)-particle state. On the . 3k(3k—1)(3k—2)
other hand, the probability of finding exacty particles de- Q= 3L(3L—-1)(3L—2)° ®)
creases by an annihilation event in a state Witlparticles,
with a rate proportional toN(N—1)/[M(M—1)]. Thus

P(N,t) obeys the following master equation: As in the two-particle case there is no right jump, since par-
ticles are not created.
(N+2)(N+1) Note that in this mapping the form of the underlying lat-

P(N+21) tice (in particular, its dimensionalijybecomes irrelevant. Di-

rected random walks have been investigated in a large vari-
N(N—1) ety of contexts[25], but there is no study on directed
M M(M—1) P(N,0), 3 randoms walks with the transition probabilitié$), (5). In
the following sections we consider these directed random
where w1 is an effective time scale incorporating both the walk models and show the presence of aging. For conve-
annihilation ratex and the dimensionality of the system. nience we shall perform the calculation in discrete time by
This parameter is irrelevant for our study and in what fol-replacing in the master equation the time derivative by the
lows we shall seu=1. finite differenceP(N,t+1)—P(N,t) and by considering the
rates(which are probabilities per time uhias actual hopping
Il RANDOM WALK MODELING propabilities. As a_technical point we remark that the nor-
OF THE ANNIHILATION PROCESS malization of the time scale chosen above ensures that no
hopping probabilities larger than 1 or less than 0 are encoun-
The annihilation dynamics described by the master equatered in the time evolution of the system. The main feature of
tion (3) is readily mapped onto a directed random walk on aour treatment is the analysis in terms of the first passage time
one-dimensional lattice as follows. We consider the numbedistribution.

gt (NY=p M(M—1)
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IV. FIRST-PASSAGE-TIME FORMULATION AND AGING (L,%0); the minimum time required to reach the site OLis

Consider a lattice segment with the sites indexed by inte!_| ence for waiting times greater thanone can expect aging

gers 0 toL. The random walk starts at site. At any site to take place. The mean value of the FPT for going fitoho

. 2 . .
0<K=<L, the left jump probability isq, and the right jump 0 is of the order oL“, for largeL. Hence for waiting times

. 2 . .
probability is 0. The random walk eventually reaches the the range ,L7), the process would show aging scaling,

absorbing site 0. Following the technique describe2el as we shall demonstra;e in the' next section by calculating
. o exactly the autocorrelation function.
we defineGy 1 (v) as the probability for a random walk o o the three-particle annihilation process, we haye
make a first passage from siketq sitek—1 in exactly v —3k(3k—1)(3k—2)/3L(3L—1)(3L—2). For largeL, the
steps. Thus is the first passage tim@&PT). A master equa-  g|axation timer, (k) ~L3/k?, and the corresponding waiting
tion for the FPT densities can be easily written as follows: e ry~L3k2. Again, the largest waiting time is obtained
N A whenk=1, for which r,=7,~L3. As k runs fromL to 1,
Gik-1(¥) =0k, 1+ (1= 0w Gyk-1(r—1) (6) e find that the relaxation time increases with the waiting
time, indicating aging. Arguing along the same lines de-
scribed in the last paragraph, we find that for the three-
particle annihilation process, we can expect aging to take

for all k=1L. We introduce the generating function
Gy k-1(2), for the FPT to go fronk to k—1, and is defined

as place over waiting times in the window.(L®). In the next
o section, we shall consider waiting times in this window, and
Gy-1(2)= 2 Z”ék,k—l( V). (7) show that the autocorrelation exhibits aging scaling. Gener-
v=1 alizing, we argue that fom-particle annihilation process, we

can expect aging over time scale frdmto L™.

The next task is to calculate numerically exactly the au-
tocorrelation of the random walk process and to show that it
depends only on the ratio of the two times for the time scales
(8) mentioned above. To this we turn now our attention.

Multiplying both sides of Eq(6) by z" and summing over
from 1 tow, we get

Z0k
1-z(1—qy’

The right-hand side of the above equation can be expande
in powers ofz, and the coefficient ok” yields the FPT

density, Gk,k—l(V)ZQk(l_qk)V_l- The required moments Let P,(t) denote the probability for the random walk to
of FPT can be readily calculated from the FPT density.be at sitek at timet given that it started off ak at timet
Equivalently, we can differentiaté, ,_,(z) with respectto =0. The discrete time master equation for the evolution
z, for m times and sex=1 to get themth factorial moment P,(t) is given by

of FPT fromk to k— 1. However, in this paper we are inter-

ested in motivating the presence of aging in the process, Pk(t+1)=0k+1Pis1(t)+(1-quP()Vk=0L—1,
through the mean-first-passage times considerations. Accord- (10
ingly, let Fy_;=(v) denote the MFPT. We gef, o

=Gy 1(z=1)=1/qy, where the prime denotes differentia- PLITD=(1=q)PL(). (1)
tion with respect t@. The MFPT to go froml tok is given  This discrete master equation can be conveniently cast in a
by the sum matrix notation by introducing a transfer matix

| P(t+1))=A|P(1)), 12
S © [P(t+1))=AlP(D) 12

Gyk-1(2)=

d V. CALCULATION OF THE AUTOCORRELATION
FUNCTION

where the [+ 1)-dimensional column vectdP(t)) has its

We call F_, the waiting timer,, andFy ,_; the relaxation kth element a®,(t) with k running from 0L, andA is the

time 7, and consider below how the relaxation time variestransition matrix. Leu(t) ando(t) denote the mean and the
with the waiting time, for two- and three-particle annihilation Standard deviation of the position of the random walk. These

are calculated as follows:

processes.
For the two-particle annihilation process, as described in o nt

the last sectiong, is given by X(2k—1)/2L(2L—1). For 1(t)=(S|XATP(0)), (13)

large L, the relaxation timer,(k)~L%/k?® and the corre- -

sponding waiting timer,(k)~L?%/k. The largest waiting o%(t)=(SX?A'P(0)) — u?(1), (14)

time is obtained fok=1, for which r,= 7,,~L?. Ask runs . _ . _ _
from L to 1, i.e., as the walker approaches the absorbingvhereX is theAstate index operator given by diagonal matrix
state(or in other words, in the annihilation process, as thewith elementsX; ;=i; Vi=0,L. The summingvector|S) is
system approaches its state of extinctjdoth the relaxation (L +1)-dimensional with all its elements unity}P(0))
and waiting times increase, a clear signature of aging in the=(00---1)" specifies the initial condition:P,(t=0)
process. Besides showing aging, the first-passage-time for= 6, | Vk=0,L. The superscripl denotes transpose opera-
mulation gives an estimate of the range of waiting times ovetion. The autocorrelation function of the position of the ran-
which one can expect aging to take place. Consider the FPdom walk (i.e., the temporal particle number autocorrelation
from L to 0, whose distribution is defined over the interval function of the reaction-diffusion systgm
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VI. CONCLUSIONS

Ienooom * t,=1x10°
. 2x 103 In this paper we have examined the occurrence of aging in
0.8 . R diffusion-limited annihilation processes. Arguing that corre-
- %, “ 2x103 lations built up by insufficient diffusive mixing would help
T 06 i’ g0 338, to confirm presence the aging, we have considered as a worst
:; 04 % 2 2x10* case scenario the limit of large diffusion rate as compared to
S ol the annihilation rate. In this limit, it is only the total number

of surviving particles and not the spatial correlations, that
determine the dynamics of the process. This limit is known
to give a good approximation of annihilation reactions in
three dimensions and we can map exactly the process onto a
10° 107 10 107 107 100 10° 10° 107 directed random walk on a one-dimensional lattice with an
t/t absorbing left boundary. From mean first passage time con-
siderations we show that the relaxation time increases rap-
F|G 1 Autocorrelation for various Waltlng times for the pair |d|y with aging timeS, Signa”ng the presence of aging in the
annihilation process. annihilation process. We have also calculated the autocorre-
lation function and shown that it scales with the ratio of the
O At At two times. In the appendix we show that, as expected, also
= (S|xA'XA Wlp(o)2>_“(tW)X“(tW+t) annihilation processes with weak diffusive mixing show ag-
o(ty) ' ing.
(15

Clty ty+t
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as a function of the ratio of to t,,, for eight values of,,

ranging fromL to ~L?, i.e., from 100 to 20 000. All the

eight data sets collapse into a single cur@t,,,t,+t) APPENDIX: DLPA IN ONE DIMENSION

=g(t/ty), where the scaling function is unity for small val- ) o o .

ues of the argument and which goes to zero for large values_Having found aging in annihilation processes with strong

of the argument. diffusive mixing it will come as no surprise to find it also in
Figure 2 depicts the autocorrelation in the scaling variabléituations where the spatial correlations are relevant for the

for the problem of three-particle annihilation process. Wedynamics of the annihilation process. In DLPA in one di-

have considered waiting times over the range, fioto L3, mension one finds anomalous slowing down of the kinetics,

i.e., from 100 to 2 10° time steps. Except for the data sets already predicted by Smoluchovski4] and much Iater_clcl)zn-
corresponding ta,,= 100 andt,=1x 1CF, the other six data firmed Dy rigorous resulti21]. The density decays as

sets collapse on a single scaling curve, showing that wefiather thart™~ as is the case in three dimensions, a behav-
within the window of waiting times betweety,=L=100 OF clearly seen also in experiments involving exciton dy-

andt,=L3=1x 1Cf, the three-particle annihilation process Na@mics on long polymer$3]. We note that one knows from
exhibits the aging phenomenon, renormalization group investigations that a finite reaction

rate and short range interaction forces are irrelevant for the
behavior of the procegdl6]. Hence, without loss of infor-
mation, one can assume particles to be physically non-

f tw:%i%%i interacting and annihilate with infinite reaction rate. The
u 5x10, long-time behavior of this system is, to leading order in time,
T identical to that of a more realistic process with finite anni-
- %x %82 hilation rate and some sort of short range interaction. For the
a %108 one-dimensional case this equivalence is of interest as in this

limit the problem is an exactly solvable many-body system.
Furthermore, in one dimension DLPA is equivalent to
zero-temperature Glauber Ising dynami&y7] through a
mapping from domain walls to particlg28,29. This spin
relaxation dynamics for the classical one-dimensional Ising
ferromagnet describes growth of ferromagnetic domains after
a quench from a high-temperature disordered initial state to
zero temperature. Also from this point of view one expects
FIG. 2. Autocorrelation for the various waiting times for the aging to occur in this process. All that really remains to show
three-particle annihilation process. is the explicit proof of aging in the context of the density

1077 107 107° 107 100 100 10° 1o°
t/t,.
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autocorrelation function and the calculation of the scaling (s|gNpe HatN e~ Hatw| pg)
form of C(t,,+t,ty). (N(t,+DON(D))= > 1;[0 e <s|pp) 4,
For the calculation of the correlation functiofN(t,, p.p’>0 4 0/q (Ad)

+1t)N(t)) with a random initial state we follow the strategy
developed in earlier work30]. Here we just outline the main \here (s|,=(0|(1+cot@/2)B,) and for po=1 one has
steps of the calculation. The quantum Hamiltonian for the1p0>p:B;r’|o>. Choosing the basis such tﬂ9?p=(1,0)g one

master equatiofil) reads finds|1)p=(0,1);, (sl,=(1,cot@r/2)) and
1 _ _ _ A 2€pt
H= EE (1= )Nk 1= S, S 1+ N(L=Nyi 1) = Sy Sy N.= 00 o Hpt— 1 co(p/2)(1—e %)
k p 0o 1/’ 0 e—Zept
NN 1= 8 8¢ 0)] (A1) (A5)

with €,=1—co9.

with the Pauli matri « =(oxxio))/2 and n=(1
e Pauli matricess, =(oytioy)/2 and n=( In the same way one calculates

—a})/2. In this convention spin down at siteis identified

with a particle, while spin up represents a vacancy. The re- (s|gN,e Mt po)
action rate is given by and the hopping rate, which sets the (Nt)Y=> [] —2 <ps| 3 : (AB)
time scale of the problem, has been chosen as 1/2. Xhen p=049=0 Po/q
=1 corresponds to noninteracting particles, in which cas<=Denoting
the Hamiltonian can be expressed by means of a Jordan-
Wigner transformatiori31] in terms of free fermion opera- sl N.e HptN._eHp(twt
tors [32]. Ap(tw,t)E< |p p p |p0>p:e725p(tw+t)
After an additional Fourier transformation the Hamil- <S|p°>P
tonian reads — (slpNpe "®[po)p 5.,
=0 e, AP
. p
H =% [(1—cosp)b;§bp+ sinpb_ b1, (A2)

We are now in a position to calculate the two-time density

. I . . correlation function
where thebg,bp satisfy fermionic anticommutation rela-

tions.b, annihilates the “vacuum statef0) r_epresenting the G(t,ty) =(N(t,, T t)N(t)) = (N(t,+ ) }(N(t,)). (A8)

empty lattice. For an even number of particles on a lattice of

M sitesp takes values 2(k+1/2)/M. Putting all intermediate results together one gets in the ther-
The quantity of interest is given by the expression modynamic limitL —oo;

+ _ —Htn o= Hty 1 (=
(N(ty+N(D)=(s|Ne HNe Mwlpg)  (A3) G(”w)zzjo APLA (b 0)— Eltut O ()]
with N==,n, and|p,) denoting the uncorrelated initial state

with density po. Without loss of generality we sgip=1 1 —(2ty+2t)

corresponding to an initially full lattice. In terms of fermi- - E(e o2ty + 21)

onic operators one finds N=pr;r,bp and |po) a2t

=T, ob" ;b}|0). In [30] we showed that the subspace to —e Wi lo(4t,+ 21)). (A9)
which random initial conditions belong form an invariant

subspace oH spanned by the bilinear zero-momentum eX_HereIn(x) IS the,TOd'f'ed Bessel funcuon. qf ordar For

o t_pt wt + large argumente™*ly(x) ~1/y27x. Normalizing the cor-

citations By,=b_ b,. Moreover, B;, B, and C, { . .
p p=p P relator as above by its valuetat 0 and using the asymptotic

_pt _ Rt ; ;
_bipb*P bppp commut_e for.dlff+erezntp and satisty the expansion of the Bessel function finally gives the exact scal-
relations of spin-1/2 Pauli matrices , g for equal values of ing function

p. Hence the time evolution within the random-initial state
subspace factorizes into blocks of dimension 2 generated by

V2I(1+x) = \2/(2+X%)

the pair excitationB,ElO). Thus the calculation of the cor- tf)= (A10)
. . . W

relator reduces to exponentiating the 2-by-2 matritgs \/5—1

=(1—cop)N,—sinpB, with Ny=(1—C,)/2 [cf. Eqg. (A2)]

and then calculating with the scaling argument=t/t,,.
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