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Aging in two- and three-particle annihilation processes
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We investigate the global two-time density-density correlations of two- and three-particle annihilation pro-
cesses. We show that the dynamical correlations scale with the ratio of the times, and thus exhibit aging. The
phenomenon of aging in these processes can be understood in terms of a mean-first-passage-time approach to
the motion of the system in phase space. We find that aging does not result from the spatial correlations and
domain growth in the system, but from a particular slowing down of the dynamics as the global density
decreases. This result holds also in one-dimensional diffusion-limited pair annihilation process, for which we
calculate the exact scaling form of the autocorrelation function.@S1063-651X~98!09802-X#

PACS number~s!: 05.40.1j, 82.20.Mj, 02.50.Ey
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I. INTRODUCTION

Aging in glasses@1# and spin glasses@2,3# is now the
focus of intense experimental@2,4# and theoretical@5–13#
investigations. Typically we consider a system prepared
nonequilibrium state at timet50; it evolves for a duration of
time tw , and we call this the waiting time or the age of th
system. Then we observe how a macroscopic propert
time tw1t is correlated to its value attw . Let us denote this
correlation byC(tw ,tw1t). A stochastic process is said to b
aging if this autocorrelation is a function of the ratiot/tw of
the two times. This is in contrast to stationary processes
which the autocorrelation function would be independent
tw and depend only on the time differencet. Thus aging
processes constitute a subclass of nonstationary proce
Physically, the dependence of correlations on the ratio of
times implies a scaling property: a young system and an
system evolve the same way if their evolution times are m
sured in units of their respective ages. One can find agin
a system that is either perennially in a nonequilibrium sta
or that relaxes very slowly to its equilibrium state. In th
former case one would usually find aging for all large wa
ing and relaxation times whereas in the latter one can de
aging on time scales that are large~so that transients die out!
but not too large compared to the equilibration time. Mo
importantly, for both classes of systems, aging would
present if the relaxation time from a quasiequilibrium state
the next increases with the time it takes to reach the qu
equilibrium state:The more you wait, the longer the syste
takes to relax.

It is clear from the above discussion that glasses prov
prototypical models for systems that exhibit aging, owing
the presence of energy@6# and/or entropy@13# barriers. It is
also clear that the phenomenon of aging should indeed
present in a rather large class of slowly relaxing nonequi
rium processes. In this paper we consider reaction-diffus
systems of particles hopping and annihilating on a latti
We are particularly interested in the two generic cases~i!
where diffusion is sufficiently fast to erase spatial dens
correlations resulting from the annihilation process, and~ii !
where diffusive mixing is inefficient and large fluctuation
571063-651X/98/57~2!/1388~7!/$15.00
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persist. We show that under both circumstances the time
relations of the surviving number of particles exhibit agi
scaling.

The paper is organized as follows. In the next section
describe the diffusion-limited annihilation processes we
investigating. Since we do not assume the reader to be fa
iar with such processes we provide a somewhat longer t
usual introduction to the problem we want to address.
show that in the limit of large diffusion constant~or, equiva-
lently, for strong repulsive forces between reactants! the
problem can be mapped exactly onto a directed random w
on an integer lattice, with site-dependent transition rates.
random walk modeling of the process is discussed in Sec.
We consider in Sec. IV the random walk process and de
the master equation for the first passage time densities.
ploying generating function techniques we obtain exact
pressions for the mean first passage time from an arbit
lattice site to another. We then interpret the waiting and
relaxation times in terms of appropriate mean first pass
times, and show that the former increases with the lat
signaling the presence of aging in these models. Mean-fi
passage considerations help us to obtain also the time s
over which the phenomenon of aging occurs. In Sec. V,
obtain by exact numerical calculation the autocorrelat
function of the random walk process and show that it sca
as the ratio of the observation time to the waiting time, ov
the time scales derived from the mean-first-passage-t
considerations. The principal conclusions are presente
the last section. In the Appendix we consider separa
diffusion-limited pair annihilation in one dimension wher
as opposed the models discussed in Secs. II–V, diffus
mixing is extremely weak. We show that also this proces
aging and calculate analytically the exact scaling form of
autocorrelation function.

II. DIFFUSION-LIMITED ANNIHILATION PROCESSES

We consider processes of a single species of particles
diffuse and react on encounter, assuming that the reac
products play no role in the subsequent dynamics of the
nihilation process. Processes of this kind, e.g., diffusio
1388 © 1998 The American Physical Society
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57 1389AGING IN TWO- AND THREE-PARTICLE . . .
limited pair annihilation 2A→B ~DLPA!, coagulation~or
sometimes more appropriately called fusion! 2A→A ~DLC!,
three-particle annihilation 3A→B ~DL3A!, etc. have a long
history of study, an important ingredient being the theory
diffusion-limited reaction based on the work by Smol
chovsky@14#. Already at that time it was realized that a nai
rate equation approach for the density loss—ṙ52lrk for
thek-particle annihilation process with reaction ratel—fails
if diffusive mixing of reactants is too weak to destroy spat
particle density correlations. Such correlations, in fact, a
correlations, build up because the annihilation process
ates empty regions and thus particles are more likely to
found far apart rather than in close proximity. This effect
strong in low dimensions and decreases with increasing
mensionality of the system. Since the beginning of the 19
this early insight, which is based on a fluctuation improv
mean-field approach, has been confirmed and vastly
tended by exact results on DLPA and DLC in one dimensi
see@15# for a recent review. More recently, renormalizatio
group studies have further clarified the role of the dimensi
ality of the system. This is briefly reviewed in@16#. We
would like to mention in passing that it has been realized t
DLPA and DLC are equivalent in the sense that the gen
tors of their respective stochastic time evolution~see below!
are related to each other by a similarity transformation@17#.
Hence, in what follows we need to consider only DLPA f
the case of two-particle annihilation processes.

For the purpose of this work it is important to note th
the mean-field rate equation approach~which completely ne-
glects all spatial correlations! provides an appropriate frame
work for DLPA in dimensions larger than two for two
particle annihilation and in dimension larger than one for
three-particle annihilation processes@18#. In higher-order
particle annihilation processes the density fluctuations
irrelevant already in one dimension. We shall not consi
such processes. Hence, for an investigation of the phen
enon of aging in these processes it is sufficient to exam
the limiting cases of strong fluctuation effects~DLPA in one
dimension with finite diffusion rate! and weak spatial densit
correlations, respectively~all diffusion-limited single-species
annihilation processes in three dimensions or DLPA w
infinite diffusion rate in one dimension!.

Of course, within a pure mean-field framework there is
possibility of studying aging, which is a phenomenon o
served by measuring temporal correlations. Hence we s
set up the problem as follows: we first formulate the f
process of diffusion-limited annihilation in any dimension
terms of a master equation. Then, in order to account for
observation that correlations are weak in three dimens
we shall employ a technical trick to simulate this situatio
but at the same time retain the temporal correlations of
total particle density. This is achieved by taking the limit
infinite diffusion rate, and at the same time leaving the
fective reaction rate constant. As will be shown in Secs.
and V, annihilation processes without spatial correlationsdo
exhibit aging.

Note that this situation is a ‘‘worst case scenario.’’ If on
could argue for the phenomenon of aging on the basis of
theory of diffusion-limited reactions, e.g., by using doma
size arguments@19#, then the question would remain wheth
aging survives in the case of rapid diffusion, which sure
f
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speeds up the annihilation process. The answer to this p
lem is not obvious as the very presence of spatial corr
tions might conceivably be the origin of this supposed agi
Phrased differently, if one can establish aging for this lim
of fast diffusion, then surely one expects it to occur in pr
cesses with relatively weak diffusive mixing where the d
namics is slower.

This simple argument is confirmed to be correct in a th
step for DLPA in one dimension, where spatial correlatio
extend over regions of monotically increasing lengthj}At
@20# and the decay of the particle density is anomalou
slow @21#. We conclude that the origin of aging in this sy
tem does not stem from spatial correlations and increas
domain sizes, but from the increasingly slow relaxation
the uncorrelated annihilation process@22#. Since the nature
of our treatment of the one-dimensional problem is very d
ferent from the main course of our investigation and, al
since our result is not at all surprising, this calculation
presented in the Appendix.

For a precise definition of DLPA consider
d-dimensional lattice. Particles hop randomly betwe
nearest-neighbor lattice sites with constant rateD. When two
particles meet on the same lattice site, they annihilate ins
taneously. Generically, we assume some short range re
sive force, which has a consequence that particles hop
occupied sites with a rate less than and independent oD.
Equivalently one can assume a hard-core repulsion of
ticles and reaction with ratel8 when two particles meet on
nearest-neighbor sites. Both processes are identical: in
case each lattice site can be occupied by at most one pa
~in the first case because of the instantaneous annihilatio
two particles, in the second case due to their hard-core
pulsion! and pair annihilation takeseffectively place on
nearest-neighbor sites. The three-particle annihilation p
cess is defined analogously.

We describe the stochastic dynamics in terms of a ma
equation for the time evolution of the probabilityP(h,t) to
find a particle configuration denoted byh at time t. A con-
venient representation of the master equation is in terms
vector equation for the probability vectoruP(t)&, the so-
called quantum Hamiltonian formalism~for a review see
@20,23,24#!. To each state of the system one assigns a b
vectoruh& and its transposêhu, which form an orthonormal
basis of the vector space. The probability vector is then gi
by uP(t)&5(hP(h,t)uh& and the master equation can b
cast in the form of an imaginary-time quantum mechani
Schrödinger equation,

d

dt
uP~ t !&52HuP~ t !&, ~1!

where the off-diagonal elements of the ‘‘quantum Ham
tonian’’ H are given by the transition ratesHh,h8
[^huHuh8&52w(h8→h) and the diagonal elements a
given byHh,h5(h8Þhw(h→h8). The off-diagonal terms of
the Hamiltonian give the gain terms in the probabilty dist
bution P(h,t) while the diagonal terms describe the loss
probability due to possible transitions out of the stateh. The
more conventional form of writing a general master equat
can be recovered from Eq.~1! by multiplying from the left
with ^hu. The quantum Hamiltonian for the one-dimension
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1390 57K. P. N. MURTHY AND G. M. SCHÜTZ
version of this process is given in the Appendix where a
the exact solution of the master equation for nonrepuls
particles is derived.

Modeling the~effective! absence of spatial correlations b
the limit of infinite hopping rate leads to an enormous si
plification of the master equation. The state of the system
then completely characterized by the probability of findi
exactly N particles, rather than also by the spatial arran
ment of these particles. The fast diffusion guarantees tha
system randomizes very quickly and hence that always e
N-particle spatial configuration is equally likely. The annih
lation problem reduces now to that of calculating the pro
ability of finding two particles simultaneously at a neighbo
ing lattice site and annihilating them. LetN(t) denote the
total number of particles in the system at timet. The equa-
tion governing the evolution ofN(t) can be immediately
written down as

d

dt
^N~ t !&52l(

k
(̂

•&
^nknk1d&, ~2!

where the indexk runs over all the lattice sites and the se
ond sum runs over all the nearest-neighbor pairs of lat
sites.nk is the number of particles at sitek, which is either 0
or 1. The random numbernk1d is the number of particles in
the nearest-neighbor site ofk. Since there are no correlation
we note that the probability of finding two particles o
nearest-neighbor sites in a random configuration ofN par-
ticles onM sites is equal toN(N21)/@M (M21)#.

In order to solve Eq.~2!, we denote byP(N,t) the prob-
ability of finding N particles in the system at timet, given
that a total ofM particles were distributed uniformly on th
d-dimensional lattice at timet50. Then the following con-
sideration yields a master equation for time evolution
P(N,t). The probability of finding exactlyN particles in-
creases by an annihilation event in a state withN12 par-
ticles. The rate of change is proportional to the probabi
(N12)(N11)/@M (M21)# of finding two particles on
nearest-neighbor sites in the (N12)-particle state. On the
other hand, the probability of finding exactlyN particles de-
creases by an annihilation event in a state withN particles,
with a rate proportional toN(N21)/@M (M21)#. Thus
P(N,t) obeys the following master equation:

d

dt
P~N,t !5m

~N12!~N11!

M ~M21!
P~N12,t !

2m
N~N21!

M ~M21!
P~N,t !, ~3!

where m is an effective time scale incorporating both t
annihilation ratel and the dimensionality of the system
This parameter is irrelevant for our study and in what f
lows we shall setm51.

III. RANDOM WALK MODELING
OF THE ANNIHILATION PROCESS

The annihilation dynamics described by the master eq
tion ~3! is readily mapped onto a directed random walk on
one-dimensional lattice as follows. We consider the num
o
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of particles in the system as the position of a random wal
on a finite, one-dimensional lattice, indexed by integers fr
0 to M52L. Since two particles annihilate upon meetin
the random walk jumps two lattice sites to the left in o
time unit. There is no right jump since there is only annih
lation and no creation of particles. Equivalently we can co
sider a single-step random walk on the lattice (0,L) with
nearest-neighbor left jump rate

qk5
2k~2k21!

2L~2L21!
~4!

at lattice sitek, and the right jump rate is zero at all sites.
is clear that the left boundary~site 0) is absorbing. The ran
dom walk starts at siteL. The position of the random walk a
any time measures the number of particles at the time. T
if the random walk is at lattice positionk at timet, then it is
equivalent to saying that there are 2k particles left in the
system and 2L22k particles have since been annihilate
under the reaction. When the random walker reaches the
sorbing site the pairwise annihilation has led to the extinct
of the population. The fact that the left jump probabili
becomes less and less as one approaches the site 0 sig
that the annihilation events becomes rarer and rarer as
total number of particles decreases. It is this slowing down
the dynamics that leads to aging in the process, as we s
see shortly in the next two sections.

The random walk modeling of the three-particle annihi
tion process proceeds essentially in the same way. We
sume 3L particles to be present at timet50. In the random
walk picture the annihilation corresponds to a jump of thr
sites to the left on a lattice of 3L sites until the system
reaches the absorbing origin. Equivalently, the random w
executes nearest-neighbor jumps on the lattice (0,L). The
left jump probability at sitek is

qk85
3k~3k21!~3k22!

3L~3L21!~3L22!
. ~5!

As in the two-particle case there is no right jump, since p
ticles are not created.

Note that in this mapping the form of the underlying la
tice ~in particular, its dimensionality! becomes irrelevant. Di-
rected random walks have been investigated in a large v
ety of contexts@25#, but there is no study on directe
randoms walks with the transition probabilities~4!, ~5!. In
the following sections we consider these directed rand
walk models and show the presence of aging. For con
nience we shall perform the calculation in discrete time
replacing in the master equation the time derivative by
finite differenceP(N,t11)2P(N,t) and by considering the
rates~which are probabilities per time unit! as actual hopping
probabilities. As a technical point we remark that the n
malization of the time scale chosen above ensures tha
hopping probabilities larger than 1 or less than 0 are enco
tered in the time evolution of the system. The main feature
our treatment is the analysis in terms of the first passage
distribution.
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57 1391AGING IN TWO- AND THREE-PARTICLE . . .
IV. FIRST-PASSAGE-TIME FORMULATION AND AGING

Consider a lattice segment with the sites indexed by in
gers 0 toL. The random walk starts at siteL. At any site
0<k<L, the left jump probability isqk and the right jump
probability is 0. The random walk eventually reaches
absorbing site 0. Following the technique described in@26#

we defineĜk,k21(n) as the probability for a random walk t
make a first passage from sitek to site k21 in exactly n
steps. Thusn is the first passage time~FPT!. A master equa-
tion for the FPT densities can be easily written as follow

Ĝk,k21~n!5qkdn,11~12qk!Ĝk,k21~n21! ~6!

for all k51,L. We introduce the generating functio
Gk,k21(z), for the FPT to go fromk to k21, and is defined
as

Gk,k21~z!5 (
n51

`

znĜk,k21~n!. ~7!

Multiplying both sides of Eq.~6! by zn and summing overn
from 1 to `, we get

Gk,k21~z!5
zqk

12z~12qk!
. ~8!

The right-hand side of the above equation can be expan
in powers of z, and the coefficient ofzn yields the FPT
density, Ĝk,k21(n)5qk(12qk)

n21. The required moments
of FPT can be readily calculated from the FPT dens
Equivalently, we can differentiateGk,k21(z) with respect to
z, for m times and setz51 to get themth factorial moment
of FPT fromk to k21. However, in this paper we are inte
ested in motivating the presence of aging in the proce
through the mean-first-passage times considerations. Acc
ingly, let Fk,k215^n& denote the MFPT. We getFk,k21

5Gk,k218 (z51)51/qk , where the prime denotes differentia
tion with respect toz. The MFPT to go fromL to k is given
by the sum

FL,k5 (
m5k11

L
1

qm
. ~9!

We call FL,k the waiting timetw andFk,k21 the relaxation
time t r and consider below how the relaxation time var
with the waiting time, for two- and three-particle annihilatio
processes.

For the two-particle annihilation process, as described
the last section,qk is given by 2k(2k21)/2L(2L21). For
large L, the relaxation timet r(k);L2/k2 and the corre-
sponding waiting timetw(k);L2/k. The largest waiting
time is obtained fork51, for whicht r5tw;L2. As k runs
from L to 1, i.e., as the walker approaches the absorb
state~or in other words, in the annihilation process, as
system approaches its state of extinction!, both the relaxation
and waiting times increase, a clear signature of aging in
process. Besides showing aging, the first-passage-time
mulation gives an estimate of the range of waiting times o
which one can expect aging to take place. Consider the
from L to 0, whose distribution is defined over the interv
-
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(L,`); the minimum time required to reach the site 0 isL.
Hence for waiting times greater thanL one can expect aging
to take place. The mean value of the FPT for going fromL to
0 is of the order ofL2, for largeL. Hence for waiting times
in the range (L,L2), the process would show aging scalin
as we shall demonstrate in the next section by calcula
exactly the autocorrelation function.

For the three-particle annihilation process, we haveqk
53k(3k21)(3k22)/3L(3L21)(3L22). For largeL, the
relaxation timet r(k);L3/k3, and the corresponding waitin
time tw;L3/k2. Again, the largest waiting time is obtaine
whenk51, for which t r5tw;L3. As k runs fromL to 1,
we find that the relaxation time increases with the waiti
time, indicating aging. Arguing along the same lines d
scribed in the last paragraph, we find that for the thr
particle annihilation process, we can expect aging to t
place over waiting times in the window (L,L3). In the next
section, we shall consider waiting times in this window, a
show that the autocorrelation exhibits aging scaling. Gen
alizing, we argue that form-particle annihilation process, w
can expect aging over time scale fromL to Lm.

The next task is to calculate numerically exactly the a
tocorrelation of the random walk process and to show tha
depends only on the ratio of the two times for the time sca
mentioned above. To this we turn now our attention.

V. CALCULATION OF THE AUTOCORRELATION
FUNCTION

Let Pk(t) denote the probability for the random walk t
be at sitek at time t given that it started off atL at time t
50. The discrete time master equation for the evolut
Pk(t) is given by

Pk~ t11!5qk11Pk11~ t !1~12qk!Pk~ t !;k50,L21,
~10!

PL~ t11!5~12qL!PL~ t !. ~11!

This discrete master equation can be conveniently cast
matrix notation by introducing a transfer matrixA:

uP~ t11!&5AuP~ t !&, ~12!

where the (L11)-dimensional column vectoruP(t)& has its
kth element asPk(t) with k running from 0,L, andA is the
transition matrix. Letm(t) ands(t) denote the mean and th
standard deviation of the position of the random walk. The
are calculated as follows:

m~ t !5^SuX̂AtuP~0!&, ~13!

s2~ t !5^SuX̂2AtuP~0!&2m2~ t !, ~14!

whereX̂ is the state index operator given by diagonal mat
with elementsX̂i ,i5 i ; ; i 50,L. The summingvector uS& is
(L11)-dimensional with all its elements unity.uP(0)&
5(00•••1)T specifies the initial condition:Pk(t50)
5dk,L;k50,L. The superscriptT denotes transpose oper
tion. The autocorrelation function of the position of the ra
dom walk~i.e., the temporal particle number autocorrelati
function of the reaction-diffusion system!
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1392 57K. P. N. MURTHY AND G. M. SCHÜTZ
C~ tw ,tw1t !5
^SuX̂AtX̂AtwuP~0!&2m~ tw!3m~ tw1t !

s2~ tw!
,

~15!

can be evaluated on a computer employing straightforw
matrix multiplication routines. We take the system sizeL
5100.

First we consider pair annihilation process. Figure 1
picts the autocorrelation of the position of the random w
as a function of the ratio oft to tw , for eight values oftw

ranging fromL to 'L2, i.e., from 100 to 20 000. All the
eight data sets collapse into a single curve,C(tw ,tw1t)
5g(t/tw), where the scaling function is unity for small va
ues of the argument and which goes to zero for large va
of the argument.

Figure 2 depicts the autocorrelation in the scaling varia
for the problem of three-particle annihilation process. W
have considered waiting times over the range, fromL to L3,
i.e., from 100 to 13106 time steps. Except for the data se
corresponding totw5100 andtw513106, the other six data
sets collapse on a single scaling curve, showing that w
within the window of waiting times betweentw5L5100
and tw5L3513106, the three-particle annihilation proces
exhibits the aging phenomenon.

FIG. 1. Autocorrelation for various waiting times for the pa
annihilation process.

FIG. 2. Autocorrelation for the various waiting times for th
three-particle annihilation process.
rd

-
k

es

e
e

ll

VI. CONCLUSIONS

In this paper we have examined the occurrence of agin
diffusion-limited annihilation processes. Arguing that corr
lations built up by insufficient diffusive mixing would help
to confirm presence the aging, we have considered as a w
case scenario the limit of large diffusion rate as compare
the annihilation rate. In this limit, it is only the total numbe
of surviving particles and not the spatial correlations, th
determine the dynamics of the process. This limit is kno
to give a good approximation of annihilation reactions
three dimensions and we can map exactly the process on
directed random walk on a one-dimensional lattice with
absorbing left boundary. From mean first passage time c
siderations we show that the relaxation time increases
idly with aging times, signaling the presence of aging in t
annihilation process. We have also calculated the autoco
lation function and shown that it scales with the ratio of t
two times. In the appendix we show that, as expected, a
annihilation processes with weak diffusive mixing show a
ing.
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APPENDIX: DLPA IN ONE DIMENSION

Having found aging in annihilation processes with stro
diffusive mixing it will come as no surprise to find it also i
situations where the spatial correlations are relevant for
dynamics of the annihilation process. In DLPA in one d
mension one finds anomalous slowing down of the kinet
already predicted by Smoluchovsky@14# and much later con-
firmed by rigorous results@21#. The density decays ast21/2

rather than}t21 as is the case in three dimensions, a beh
ior clearly seen also in experiments involving exciton d
namics on long polymers@33#. We note that one knows from
renormalization group investigations that a finite react
rate and short range interaction forces are irrelevant for
behavior of the process@16#. Hence, without loss of infor-
mation, one can assume particles to be physically n
interacting and annihilate with infinite reaction rate. T
long-time behavior of this system is, to leading order in tim
identical to that of a more realistic process with finite an
hilation rate and some sort of short range interaction. For
one-dimensional case this equivalence is of interest as in
limit the problem is an exactly solvable many-body syste

Furthermore, in one dimension DLPA is equivalent
zero-temperature Glauber Ising dynamics@27# through a
mapping from domain walls to particles@28,29#. This spin
relaxation dynamics for the classical one-dimensional Is
ferromagnet describes growth of ferromagnetic domains a
a quench from a high-temperature disordered initial state
zero temperature. Also from this point of view one expe
aging to occur in this process. All that really remains to sh
is the explicit proof of aging in the context of the densi
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autocorrelation function and the calculation of the scal
form of C(tw1t,tw).

For the calculation of the correlation function̂N(tw
1t)N(t)& with a random initial state we follow the strateg
developed in earlier work@30#. Here we just outline the main
steps of the calculation. The quantum Hamiltonian for
master equation~1! reads

H5
1

2(k
@~12nk!nk112sk

2sk11
1 1nk~12nk11!2sk

1sk11
2

1l~nknk112sk
1sk11

1 !# ~A1!

with the Pauli matricessk
65(sk

x6 isk
y)/2 and nk5(1

2sk
z)/2. In this convention spin down at sitek is identified

with a particle, while spin up represents a vacancy. The
action rate is given byl and the hopping rate, which sets th
time scale of the problem, has been chosen as 1/2. Thel
51 corresponds to noninteracting particles, in which c
the Hamiltonian can be expressed by means of a Jor
Wigner transformation@31# in terms of free fermion opera
tors @32#.

After an additional Fourier transformation the Ham
tonian reads

H5(
p

@~12cosp!bp
†bp1sinpb2pbp#, ~A2!

where thebp
† ,bp satisfy fermionic anticommutation rela

tions.bp annihilates the ‘‘vacuum state’’u0& representing the
empty lattice. For an even number of particles on a lattice
M sitesp takes values 2p(k11/2)/M .

The quantity of interest is given by the expression

^N~ tw1t !N~ t !&5^suNe2HtNe2Htwur0& ~A3!

with N5(knk andur0& denoting the uncorrelated initial sta
with density r0. Without loss of generality we setr051
corresponding to an initially full lattice. In terms of ferm
onic operators one finds N5(pbp

†bp and ur0&
5)p.0b2p

† bp
†u0&. In @30# we showed that the subspace

which random initial conditions belong form an invaria
subspace ofH spanned by the bilinear zero-momentum e
citations Bp

†5b2p
† bp

† . Moreover, Bp
† , Bp and Cp

5b2p
† b2p2bp

†bp commute for differentp and satisfy the
relations of spin-1/2 Pauli matricess6,sz for equal values of
p. Hence the time evolution within the random-initial sta
subspace factorizes into blocks of dimension 2 generate
the pair excitationsBp

†u0&. Thus the calculation of the cor
relator reduces to exponentiating the 2-by-2 matricesHp
5(12cosp)Np2sinpBp with Np5(12Cp)/2 @cf. Eq. ~A2!#
and then calculating
d

an
g

e

-

e
n-

f

-

by

^N~ tw1t !N~ t !&5 (
p,p8.0

)
q.0

^suqNpe2HqtNp8e
2Hqtwur0&q

^sur0&q
,

~A4!

where ^sup5^0u(11cot(p/2)Bp) and for r051 one has
ur0&p5Bp

†u0&. Choosing the basis such thatu0&p5(1,0)p
T one

finds u1&p5(0,1)p
T , ^sup5„1,cot(p/2)… and

Np5S 0 0

0 1D , e2Hpt5S 1 cot~p/2!~12e22ept!

0 e22ept D
~A5!

with ep512cosp.
In the same way one calculates

^N~ t !&5 (
p.0

)
q.0

^suqNpe2Hqtur0&q

^sur0&q
. ~A6!

Denoting

Lp~ tw ,t ![
^supNpe2HptNpeHp~ tw1t !ur0&p

^sur0&p
5e22ep~ tw1t !

Jp~ t ![
^supNpe2Hptur0&p

^sur0&p
5e22ept ~A7!

We are now in a position to calculate the two-time dens
correlation function

G~ t,tw![^N~ tw1t !N~ t !&2^N~ tw1t !&^N~ tw!&. ~A8!

Putting all intermediate results together one gets in the th
modynamic limitL→`:

G~ t,tw!5
1

2pE0

p

dp@Lp~ tw ,t !2Jp~ tw1t !Jp~ tw!#

5
1

2
~e2~2tw12t !I 0~2tw12t !

2e2~4tw12t !I 0~4tw12t !!. ~A9!

Here I n(x) is the modified Bessel function of ordern. For
large argumente2xI 0(x);1/A2px. Normalizing the cor-
relator as above by its value att50 and using the asymptoti
expansion of the Bessel function finally gives the exact sc
ing function

C~ tw ,t !5
A2/~11x!2A2/~21x!

A221
~A10!

with the scaling argumentx5t/tw .
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